2019年全国统一高考数学试卷(理科)(新课标Ⅰ)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=( )
A.{x|﹣4<x<3}B.{x|﹣4<x<﹣2}C.{x|﹣2<x<2}D.{x|2<x<3}
2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则( )
A.(x+1)2+y2=1B.(x﹣1)2+y2=1
C.x2+(y﹣1)2=1D.x2+(y+1)2=1
3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则( )
A.a<b<cB.a<c<bC.c<a<bD.b<c<a
4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是( )
A.165cmB.175cmC.185cmD.190cm
5.(5分)函数f(x)在[﹣π,π]的图象大致为( )
A.B.
C.D.
6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )
A.B.C.D.
7.(5分)已知非零向量,满足||=2||,且()⊥,则与的夹角为( )
A.B.C.D.
8.(5分)如图是求的程序框图,图中空白框中应填入( )
A.AB.A=2
C.AD.A=1
9.(5分)记Sn为等差数列{an}的前n项和.已知S4=0,a5=5,则( )
A.an=2n﹣5B.an=3n﹣10
C.Sn=2n2﹣8nD.Snn2﹣2n
10.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为( )
A.y2=1B.1C.1D.1
11.(5分)关于函数f(x)=sin|x|+|sinx|有下述四个结论:
①f(x)是偶函数②f(x)在区间(,π)单调递增
③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2
其中所有正确结论的编号是( )
A.①②④B.②④C.①④D.①③
12.(5分)已知三棱锥P﹣ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( )
A.8πB.4πC.2πD.π
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)曲线y=3(x2+x)ex在点(0,0)处的切线方程为.
14.(5分)记Sn为等比数列{an}的前n项和.若a1,a42=a6,则S5=.
15.(5分)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是.
16.(5分)已知双曲线C:1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若,•0,则C的离心率为.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。
17.(12分)△ABC的内角A,B,C的对边分别为a,b,c.设(sinB﹣sinC)2=sin2A﹣sinBsinC.
(1)求A;
(2)若a+b=2c,求sinC.
18.(12分)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE;
(2)求二面角A﹣MA1﹣N的正弦值.
19.(12分)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.
(1)若|AF|+|BF|=4,求l的方程;
(2)若3,求|AB|.
20.(12分)已知函数f(x)=sinx﹣ln(1+x),f′(x)为f(x)的导数.证明:
(1)f′(x)在区间(﹣1,)存在唯一极大值点;
(2)f(x)有且仅有2个零点.
21.(12分)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得﹣1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得﹣1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.
(1)求X的分布列;
(2)若甲药、乙药在试验开始时都赋予4分,pi(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,pi=api﹣1+bpi+cpi+1(i=1,2,…,7),其中a=P(X=﹣1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.
(i)证明:{pi+1﹣pi}(i=0,1,2,…,7)为等比数列;
(ii)求p4,并根据p4的值解释这种试验方案的合理性.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分)
22.(10分)在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθρsinθ+11=0.
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
[选修4-5:不等式选讲](10分)
23.已知a,b,c为正数,且满足abc=1.证明:
(1)a2+b2+c2;
(2)(a+b)3+(b+c)3+(c+a)3≥24.