2024年辽宁中考数学试题及答案
第一部分 选择题(共30分)
一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中;有一项是符合题目要求的)
1.如图是由5个相同的小立方块搭成的几何体,这个几何体的俯视图是( )
A. B. C. D.
2.亚洲、欧洲、非洲和南美洲的最低海拔如下表:
大洲 | 亚洲 | 欧洲 | 非洲 | 南美洲 |
最低海拔 |
其中最低海拔最小的大洲是( )
A.亚洲 B.欧洲 C.非洲 D.南美洲
3.越山向海,一路花开.在5月24日举行的2024辽宁省高品质文体旅融合发展大型产业招商推介活动中,全省30个重大文体旅项目进行集中签约,总金额达532亿元.将53200000000用科学记数法表示为( )
A. B. C. D.
4.如图,在矩形中,点在上,当是等边三角形时,为( )
A. B. C. D.
5.下列计算正确的是( )
A. B. C. D.
6.一个不透明袋子中装有4个白球,3个红球,2个绿球,1个黑球,每个球除颜色外都相同.从中随机摸出一个球,则下列事件发生的概率为的是( )
A.摸出白球 B.摸出红球 C.摸出绿球 D.摸出黑球
7.纹样是我国古代艺术中的瑰宝.下列四幅纹样图形既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
8.我国古代数学著作《孙子算经》中有“雉兔同笼”问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”其大意是:鸡兔同笼,共有35个头,94条腿,问鸡兔各多少只?设鸡有只,兔有只,根据题意可列方程组为( )
A. B. C. D.
9.如图,的对角线,相交于点,,,若,,则四边形的周长为( )
A.4 B.6 C.8 D.16
10.如图,在平面直角坐标系中,菱形的顶点在轴负半轴上,顶点在直线上,若点的横坐标是8,为点的坐标为( )
A. B. C. D.
第二部分 非选择题(共90分)
二、填空题(本题共5小题,每小题3分,共15分)
11.方程的解为 .
12.在平面直角坐标系中,线段的端点坐标分别为,,将线段平移后,点的对应点的坐标为,则点的对应点的坐标为 .
13.如图,,与相交于点,且与的面积比是,若,则的长为 .
14.如图,在平面直角坐标系中,抛物线与与相交于点,,点的坐标为,若点在抛物线上,则的长为 .
15.如图,四边形中,,,,.以点为圆心,以长为半径作图,与相交于点,连接.以点为圆心,适当长为半径作弧,分别与,相交于点,,再分别以点,为圆心,大于的长为半径作弧,两弧在的内部相交于点,作射线,与相交于点,则的长为 (用含的代数式表示).
三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)
16.(1)计算:;
(2)计算:.
17.甲、乙两个水池注满水,蓄水量均为、工作期间需同时排水,乙池的排水速度是.若排水3h,则甲池剩余水量是乙池剩余水量的2倍.
(1)求甲池的排水速度.
(2)工作期间,如果这两个水池剩余水量的和不少于,那么最多可以排水几小时?
18.某校为了解七年级学生对消防安全知识掌握的情况,随机抽取该校七年级部分学生进行测试,并对测试成绩进行收集、整理、描述和分析(测试满分为100分,学生测试成绩均为不小于60的整数,分为四个等级:D:,C:,B:,A:),部分信息如下:
信息一:
信息二:学生成绩在B等级的数据(单位:分)如下:
80,81,82,83,84,84,84,86,86,86,88,89
请根据以上信息,解答下列问题:
(1)求所抽取的学生成组为C等级的人数;
(2)求所抽取的学生成绩的中位数;
(3)该校七年级共有360名学生,若全年级学生都参加本次测试,请估计成绩为A等级的人数.
19.某商场出售一种商品,经市场调查发现,日销售量(件)与每件售价(元)满足一次函数关系,部分数据如下表所示:
每件售价/元 | |||||
日销售量/件 |
(1)求与之间的函数关系式(不要求写出自变量的取值范围);
(2)该商品日销售额能否达到元?如果能,求出每件售价:如果不能,请说明理由.
20.如图1,在水平地面上,一辆小车用一根绕过定滑轮的绳子将物体竖直向上提起.起始位置示意图如图2,此时测得点到所在直线的距离,;停止位置示意图如图3,此时测得(点,,在同一直线上,且直线与平面平行,图3中所有点在同一平面内.定滑轮半径忽略不计,运动过程中绳子总长不变.(参考数据:,,,)
(1)求的长;
(2)求物体上升的高度(结果精确到).
21.如图,是的外接圆,是的直径,点在上,,在的延长线上,.
(1)如图1,求证:是的切线;
(2)如图2,若,,求的长.
22.如图,在中,,.将线段绕点顺时针旋转得到线段,过点作,垂足为.
图1 图2 图3
(1)如图1,求证:;
(2)如图2,的平分线与的延长线相交于点,连接,的延长线与的延长线相交于点,猜想与的数量关系,并加以证明;
(3)如图3,在(2)的条件下,将沿折叠,在变化过程中,当点落在点的位置时,连接.
①求证:点是的中点;
②若,求的面积.
23.已知是自变量的函数,当时,称函数为函数的“升幂函数”.在平面直角坐标系中,对于函数图象上任意一点,称点为点“关于的升幂点”,点在函数的“升幂函数”的图象上.例如:函数,当时,则函数是函数的“升幂函数”.在平面直角坐标系中,函数的图象上任意一点,点为点“关于的升幂点”,点在函数的“升幂函数”的图象上.
图1 图2
(1)求函数的“升幂函数”的函数表达式;
(2)如图1,点在函数的图象上,点“关于的升幂点”在点上方,当时,求点的坐标;
(3)点在函数的图象上,点“关于的升幂点”为点,设点的横坐标为.
①若点与点重合,求的值;
②若点在点的上方,过点作轴的平行线,与函数的“升幂函数”的图象相交于点,以,为邻边构造矩形,设矩形的周长为,求关于的函数表达式;
③在②的条件下,当直线与函数的图象的交点有3个时,从左到右依次记为,,,当直线与函数的图象的交点有2个时,从左到右依次记为,,若,请直接写出的值.
参考答案
1.A
【分析】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.
【详解】从上面看易得上面一层有2个正方形,下面左边有1个正方形.
故选:A.
2.A
【分析】此题主要考查了负数的大小比较,掌握负数比较大小,绝对值大的反而小是解题关键.比较各负数的绝对值,绝对值最大的,海拔就最低,故可得出答案.
【详解】,,,
∵,
∴,
∴海拔最低的是亚洲.
故选:A.
3.C
【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.
科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正整数;当原数的绝对值时,是负整数.
【详解】解:,
故选:C.
4.C
【分析】本题考查了矩形的性质,等边三角形的性质,熟练掌握等边三角形的性质是解题的关键.
由矩形得到,继而得到,而是等边三角形,因此得到.
【详解】解:∵四边形是矩形,
∴,
∴,
∵是等边三角形,
∴,
∴,
故选:C.
5.D
【分析】根据合并同类项、同底数幂的乘法、幂的乘方、单项式乘以多项式等知识点进行判定即可.
【详解】A.,故本选项原说法不符合题意;
B.,故本选项原说法不合题意;
C.,故本选项原说法不合题意;
D.,故本选项符合题意.
故选:D.
【点睛】此题考查了整式的运算,涉及的知识有:合并同类项、同底数幂的乘法、幂的乘方、单项式乘以多项式的运算,熟练掌握运算法则是解本题的关键.
6.B
【分析】本题考查了概率,熟练掌握概率公式是解题关键.分别求出摸出四种颜色球的概率,即可得到答案.
【详解】解:A、摸出白球的概率为,不符合题意;
B、摸出红球,符合题意;
C、摸出绿球,不符合题意;
D、摸出黑球,不符合题意;
故选:B.
7.B
【分析】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】解:A、既不是轴对称图形也不是中心对称图形,故本选项不符合题意;
B.既是轴对称图形又是中心对称图形,故本选项符合题意;
C.是轴对称图形,不是中心对称图形,故本选项不符合题意;
D.不是轴对称图形,是中心对称图形,故本选项不符合题意.
故选:B.
8.D
【分析】本题考查了二元一次方程组的应用,找出等量关系是解题关键.设鸡有只,兔有只,根据“鸡兔同笼,共有35个头,94条腿”列二元一次方程组即可.
【详解】解:设鸡有只,兔有只,
由题意得:,
故选:D.
9.C
【分析】本题考查了平行四边形的判定与性质,熟练掌握知识点是解题的关键.
由四边形是平行四边形得到,,再证明四边形是平行四边形,则,即可求解周长.
【详解】解:∵四边形是平行四边形,
∴,,
∵,,
∴四边形是平行四边形,
∴,
∴周长为:,
故选:C.
10.B
【分析】过点B作轴,垂足为点D,先求出,由勾股定理求得,再由菱形的性质得到轴,最后由平移即可求解.
【详解】解:过点B作轴,垂足为点D,
∵顶点在直线上,点的横坐标是8,
∴,即,
∴,
∵轴,
∴由勾股定理得:,
∵四边形是菱形,
∴轴,
∴将点B向左平移10个单位得到点C,
∴点,
故选:B.
【点睛】本题考查了一次函数的图像,勾股定理,菱形的性质,点的坐标平移,熟练掌握知识点,正确添加辅助线是解题的关键.
11.
【分析】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.
先去分母,再解一元一次方程,最后再检验.
【详解】解:,
,
解得:,
经检验:是原方程的解,
∴原方程的解为:,
故答案为:.
12.
【分析】本题考查了平面直角坐标系中点的平移,熟练掌握知识点是解题的关键.
先由点A和点确定平移方式,即可求出点的坐标.
【详解】解:由点平移至点得,点A向上平移了2个单位得到点,
∴向上平移2个单位后得到点,
故答案为:.
13.12
【分析】本题考查了相似三角形的判定与性质,把握相似三角形面积比等于相似比的平方是解题的关键.
可得,再根据相似三角形面积比等于相似比的平方即可求解.
【详解】解:∵,
∴,
∴,
∴,
∴,
故答案为:12.
14.
【分析】本题主要考查了待定系数求二次函数的解析式,二次函数的性质,熟练求解二次函数的解析式是解题的关键.先利用待定系数法求得抛物线,再令,得,解得或,从而即可得解.
【详解】解:把点,点代入抛物线得,
,
解得,
∴抛物线,
令,得,
解得或,
∴,
∴;
故答案为:.
15.
【分析】本题考查了作图﹣作角平分线,平行线的性质,等腰三角形的判定,熟练掌握知识点是解题的关键.
利用基本作图得到,平分,,接着证明得到,然后利用求解.
【详解】解:由作法得,平分,
∴,
∵,
∴,
∴,
∴,
∴.
故答案为:.
16.(1);(2)1
【分析】本题考查了实数的运算,分式的化简,熟练掌握知识点是解题的关键.
(1)先化简二次根式,去绝对值,再进行加减运算;
(2)先计算乘法,再计算加法即可.
【详解】解:(1)原式
;
(2)原式
.
17.(1)
(2)4小时
【分析】本题考查了列一元一次方程解应用题,一元一次不等式的应用,熟练掌握知识点,正确理解题意是解题的关键.
(1)设甲池的排水速度为,由题意得,,解方程即可;
(2)设排水a小时,则,再解不等式即可.
【详解】(1)解:设甲池的排水速度为,
由题意得,,
解得:,
答:甲池的排水速度为;
(2)解:设排水a小时,
则,
解得:,
答:最多可以排4小时.
18.(1)7人
(2)85
(3)120人
【分析】本题考查了扇形统计图和频数分布直方图,中位数,用样本估计总体,正确理解题意是解题的关键.
(1)先根据B的人数以及所占百分比求得总人数,再拿总人数减去A、B、D的人数即可;
(2)总人数为30人,因此中位数是第15和第16名同学的成绩的平均数,由于C中1人,D中7人,B中12人,故中位数是B中第7和第8名同学的成绩的平均数,因此中位数为:;
(3)拿360乘以A等级的人数所占百分比即可.
【详解】(1)解:总人数为:(人),
∴抽取的学生成组为C等级的人数为:(人);
(2)解:总人数为30人,因此中位数是第15和第16名同学的成绩的平均数,
∵C中1人,D中7人,B中12人,故中位数是B中第7和第8名同学的成绩的平均数,
∴中位数为:;
(3)解:成绩为A等级的人数为:(人),
答:成绩为A等级的人数为120.
19.(1);
(2)该商品日销售额不能达到元,理由见解析。
【分析】本题考查了一次函数的应用以及一元二次方程的应用,解题的关键是:(1)利用待定系数法求出与之间的函数表达式;(2)找准等量关系,正确列出一元二次方程.
(1)根据表格中的数据,利用待定系数法即可求出与之间的函数表达式;
(2)利用销售额每件售价销售量,即可得出关于的一元二次方程,利用根与系数的关系求解即可.
【详解】(1)解:设与之间的函数表达式为,
将,代入得
,
解得,
与之间的函数表达式为;
(2)解:该商品日销售额不能达到元,理由如下:
依题意得,
整理得,
∴,
∴该商品日销售额不能达到元.
20.(1)
(2)
【分析】本题考查了解直角三角形的应用,勾股定理,熟练掌握知识点是解题的关键.
(1)解即可求解;
(2)在中,由勾股定理得,,解求得,由题意得,,故,则.
【详解】(1)解:由题意得,,
∵,,
∴在中,由,
得:,
∴,
答:;
(2)解:在中,由勾股定理得,,
在中,,
∴,
∴,
由题意得,,
∴,
∴,
答:物体上升的高度约为.
21.(1)见详解
(2)
【分析】(1)连接,则,故,由,得到,而,则,由,得,因此,故,则是的切线;
(2)连接,可得,则,故,由,得,那么长为.
【详解】(1)证明:连接,
∵,
∴,
∴,
∵,
∴,
∵为直径,
∴,
∴,即,
∵,
∴,
∴,
∴,
∴,
∴是的切线;
(2)解:连接,
由(1)得,
∵,
∴,
∵,
∴,
∴,
∵,
∴,
∴长为:.
【点睛】本题考查了圆周角定理,切线的判定,直角三角形的性质,三角形的外角性质,弧长公式等,正确添加辅助线是解决本题的关键.
22.(1)见详解
(2)
(3)30
【分析】(1)利用“”即可证明;
(2)可知,证明,则,可得,则,故;
(3)①翻折得,根据等角的余角相等得到,故,则,即点F是中点;
②过点F作交于点M,连接,设,,则,由翻折得,故,因此,在中,由勾股定理得:,解得:或(舍,此时) ,在中,由勾股定理得:,解得:,则,由,得到,,因此,故.
【详解】(1)证明:如图,
由题意得,,
∴
∵,
∴,
∴,
∴,
∵,
∴,
∴;
(2)猜想:
证明:∵,
∴,
∵平分,
∴,
∵,
∴,
∴,
∵,,
∴,
∴,
∴;
(3)解:①由题意得,
∴,
∵,
∴,
∴,,
∴,
∴,
∴,即点F是中点;
②过点F作交于点M,连接,
∵,
∴,
设,,
∴,
由翻折得,
∴,
∴,
在中,由勾股定理得:,
整理得,,
解得:或(舍,此时) ,
在中,由勾股定理得:,
解得:,
∴,
∵,
∴,,
∴点M为中点,
∴,
∴.
【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,翻折的性质,勾股定理解三角形,平行线分线段成比例定理,正确添加辅助线是解题的关键.
23.(1)
(2)
(3)①或;②;③或
【分析】(1)根据“升幂函数”的定义,可得,即可求解,
(2)设,根据“升幂点”的定义得到,由,在点上方,得到,即可求解,
(3)①由,,点与点重合,得到,即可求解,②由,得到对称轴为,、关于对称轴对称,结合,则,得到,进而得到,,由点在点的上方,得到点在点的上方,,解得:,,当,,,当,,,即可求解,③根据②中结论得到,,,将,,代入,得到,,,结合图像可得,当时,直线与函数的图象有3个交点,当时,直线与函数的图象有2个交点,将直线与函数联立,由根与系数关系得到,,,将直线与函数联立,由根与系数关系得到,,,结合,可得,当时,,解得:,由,得到,解得:,即可求解,
【点睛】本题考查了,求二次函数解析式,二次函数的性质,二次函数综合,根据系数关系,解题的关键是:熟练掌握二次函数的性质,将题目所给条件进行转化.
【详解】(1)解:根据题意得:,
故答案为:,
(2)解:设点,则,
∵,在点上方,
∴, 解得:,
∴;
(3)解:①根据题意得:,则,
∵点与点重合,
∴,解得:或,
②根据题意得:,
∴对称轴为,、关于对称轴对称,
∵,则,
∴,解得:,
∴,,
∵点在点的上方,
∴,解得:,
∴,
当,点在点右侧时,,,
当,点在点左侧时,,,
∴,
③∵,
∴,,
当时,,
当时,,
当时,,
∴,,,
当时,直线与函数的图象有3个交点,
当时,直线与函数的图象有2个交点,
直线与函数交于、两点,,即:,
∴,,,
直线与函数交于、两点,,即:,
∴,,,
∵,
∴,整理得:,
当时,
,解得:或(舍),
∴,
∴,解得:,
∴,
或.