高中数学试题答案与解析

在△ABC中,1+sinAsinB=cos2B﹣sin2A+sin2C.

(1)求角C的大小;

(2)若D在边AB上,DC⊥CB,且,求△ABC的面积S.

章节:高考数学第三章3.8 正弦定理和余弦定理的应用
答案:

(1)由题意得1cos2B+sin2Asin2C=﹣sinAsinB

sin2B+sin2Asin2C=﹣sinAsinB

由正弦定理得AC2+BC2AB2=﹣BCAC

由余弦定理得

因为C0π),所以

2)如图,

因为DCCB,所以

在△ACD中,由正弦定理得

解得

(舍去),

,则

解析:

(1)由正弦定理及余弦定理化简即可得出所求角;

(2)由正弦定理求出∠ADC,再由三角形的面积公式求解.

关联导航